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Abstract

Long’s equation describes steady-state two-dimensional stratified flow over terrain. Its
numerical solutions under various approximations were investigated by many authors.
Special attention was paid to the properties of the gravity waves that are predicted to be
generated as a result. In this paper we derive a time-dependent generalization of this5

equation and investigate analytically its solutions under some simplifications. These
results might be useful in the experimental analysis of gravity waves over topography
and their impact on atmospheric modeling.

1 Introduction

Long’s equation (Long, 1953, 1954, 1955, 1959) model the flow of inviscid stratified in-10

compressible fluid in two dimensions over terrain. When the base state of the flow (that
is the unperturbed flow field far upstream) is without shear the solutions of this equa-
tion are in the form of steady lee waves. Solutions of this equation in various settings
and approximations were studied by many authors (Drazin, 1961; Drazin and Moore,
1967; Durran, 1992; Lily and Klemp, 1979; Peltier and Clark, 1983; Smith, 1980, 1989;15

Yih, 1967). The most common approximation in these studies was to set Brunt–Väisälä
frequency to a constant or a step function over the computational domain. Moreover
the values of the parameters β and µ which appear in this equation were set to zero. In
this (singular) limit of the equation the nonlinear terms and one of the leading second
order derivatives in the equation drop out and the equation reduces to that of a lin-20

ear harmonic oscillator over two dimensional domain. Careful studies (Lily and Klemp,
1979) showed that these approximations are justified unless wave breaking is present
in the solution (Peltier and Clark, 1983; Miglietta and Rotunno, 2014).

Long’s equation provides also the theoretical framework for the analysis of experi-
mental data (Fritts and Alexander, 2003; Shutts et al., 1988; Vernin et al., 2007; Jumper25

et al., 2004) under the assumption of shearless base flow. (An assumption which, in
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general, is not supported by the data.) An extensive list of references appears in Fritts
and Alexander (2003), Baines (1995), Nappo (2012) and Yhi (1980).

An analytic approach to the study of this equation and its solutions was initiated
recently by the current author (Humi, 2004). We showed that for a base flow without
shear and under rather mild restrictions the nonlinear terms in the equation can be5

simplified. We also identified the “slow variable” that controls the nonlinear oscillations
in this equation and using phase averaging approximation derived a formula for the
attenuation of the stream function perturbation with height. This result is generically
related to the presence of the nonlinear terms in Long’s equation. We explored also
different formulations of this equation (Humi, 2007, 2009) and the effect of shear on the10

solutions of this equation (Humi, 2006, 2010).
One of the major obstacles to the application of Long’s equation in realistic applica-

tions is due to the fact that it is restricted to the description of steady states of the flow. It
is therefore our objective in this paper to derive a time-dependent generalization of this
equation and study the properties of its solutions. The resulting system contains two15

equations for the time evolution of the density and the stream function. While the equa-
tion for the stream function is rather complicated it can be simplified in two instances.
The first corresponds to the classical (steady state) Long’s equation while the second
is time dependent and new (as far as we know). In this paper we explore the properties
of the flow in this second case which might find some applications in the analysis of20

experimental data about gravity waves (Vernin, 2007; Jumper, 2004; Nappo, 2012) and
it application to atmospheric modeling (Jadwiga et al., 2010; Geller et al., 2013).

The plan of the paper is as follows: in Sect. 2 we derive the time dependent of Long’s
equation. In Sect. 3 we consider the time evolution and proper boundary conditions on
shearless flow over topography.25
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2 Derivation of the time dependent Long’s equation

In two dimensions (x,z) the flow of inviscid and incompressible stratified fluid is mod-
eled by the following equations:

ux +wz = 0 (1)

ρt +uρx +wρz = 0 (2)5

ρ(ut +uux +wuz) = −px (3)

ρ(wt +uwx +wwz) = −pz −ρg (4)

where subscripts indicate differentiation with respect to the indicated variable, u =
(u,w) is the fluid velocity, ρ is its density, p is the pressure and g is the acceleration of10

gravity.
We can non-dimensionalize these equations by introducing

x =
x
L

, z =
N0

U0
z, u =

u
U0

, w =
LN0

U2
0

w

ρ =
ρ
ρ0

, p =
N0

gU0ρ0
p (5)

15

where L, U0, and ρ0 represent respectively characteristic length, velocity and density.
N0 is the characteristic Brunt–Väisälä frequency

N2
0 = −

g
ρ0

dρ0

dz
. (6)
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In these new variables Eqs. (1)–(4) take the following form (for brevity we drop the
bars)

ux +wz = 0 (7)

ρt +uρx +wρz = 0 (8)

βρ(ut +uux +wuz) = −pz (9)5

βρ(wt +uwx +wwz) = −µ−2(pz +ρ) (10)

where

β =
N0U0

g
(11)

µ =
U0

N0L
. (12)10

β is the Boussinesq parameter (Shutts et al., 1988; Baines, 1995) which controls strati-
fication effects (assuming U0 6= 0) and µ is the long wave parameter which controls dis-
persive effects (or the deviation from the hydrostatic approximation). In the limit µ = 0
the hydrostatic approximation is fully satisfied (Baines, 1995; Nappo, 2012).15

In view of Eq. (7) we can introduce a stream function ψ so that

u = ψz, w = −ψx . (13)

Using this stream function we can rewrite Eq. (8) as

ρt + J{ρ,ψ} = 0 (14)

where for any two (smooth) functions f ,g20

J{f ,g} = ∂f
∂x

∂g
∂z
− ∂f
∂z
∂g
∂x

. (15)
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Using ψ the momentum Eqs. (9) and (10) become

βρ(ψzt +ψzψzx −ψxψzz) = −px (16)

βµ2ρ(−ψxt −ψzψxx +ψxψxz) = −pz −ρ. (17)

We can suppress µ from the system (Eqs. 14, 16 and 17) if we introduce the following5

normalized independent variables

t̄ =
t
µ

, x̄ =
x
µ

, z̄ = z, µ 6= 0. (18)

Equations (14) and (16) remain unchanged and Eq. (17) becomes

βρ(−ψxt −ψzψxx +ψxψxz) = −pz −ρ (19)

where we dropped the bars on t,x,z. However we observe that in these coordinates10

ψz = u and ψx = −µw.
Thus after all these transformations the system of equations governing the flow is

Eqs. (14), (16) and (19).
To eliminate p from Eqs. (16) and (18) we differentiate these equations with respect

to z,x respectively and subtract. This leads to15

βρz(ψzt +ψzψzx −ψxψzz)+
βρ(ψzzt +ψzψzzx −ψxψzzz)−
βρx(−ψxt −ψzψxx +ψxψxz)−
βρ(−ψxxt −ψzψxxx +ψxψxxz) = ρx. (20)

20

The sum of the second and fourth terms in this equation can be rewritten as

βρ
[
∇2ψ)t + J{∇2ψ ,ψ}

]
. (21)
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(However observe that when µ 6= 1, ∇2ψ does not represent the flow vorticity due to
the transformation Eq. (18) and therefore the sum of the two terms in Eq. (21) is not
zero in general.)

To reduce the first and third terms in Eq. (20) we use Eq. (14). We obtain

β[ρz(ψzt +ψzψzx −ψxψzz)] (22)5

−β[ρx(−ψxt −ψzψxx +ψxψxz)]
= β[ρz(ψzt +ρzψzψzx − (ρt +ρxψz)ψzz
+ρxψxt + (ψxρz −ρt)ψxx −ρxψxψxz]

= β
{
ρzψzt +ρxψxt −ρt∇2ψ +

1
2
J{(ψx)2 + (ψz)

2,ρ}
}

.
10

Combining the results of Eqs. (21) and (22) Eq. (20) becomes

ρ
[(
∇2ψ

)
t + J{∇

2ψ ,ψ}
]
ρzψzt +ρxψxt (23)

+
[
−ρt∇2ψ +

1
2
J{(ψx)2 + (ψz)

2,ρ}
]
=
J{ρ,z}
β

.

Thus we have reduced the original four Eqs. (1)–(4) to two Eqs. (14) and (23). This15

system of equations can be considered as the generalization of Long’s equation to time
dependent flows. While Eq. (23) is rather complicated in general it can be simplified
further in two special cases. The first is when one considers the steady state of the
flow. This restriction leads to Long’s equation (Long, 1953; Smith, 1989; Baines, 1995).
The second case happens when ∇2ψ = 0 i.e ψ is harmonic. (Observe however that20

this does not imply that the vorticity is zero due to the transformation (Eq. 18) unless
µ = 1.) Equation (23) becomes

ρzψzt +ρxψxt +
1
2
J
{

(ψx)2 + (ψz)
2,ρ
}
=
J{ρ,z}
β

. (24)
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However if ∇2ψ = 0 we can define v1 = ψz and v2 = −ψx. (These definitions use the
stretched coordinates of Eq. 18). This implies that,

(v1)z − (v2)x = 0.

This implies that there exists a function η so that

ηx = v1, ηz = v2.5

That is

ηx = ψz, ηz = −ψx.

Physically these relations imply that ηx = u and ηz = µw.
Replacing ψ by η in Eq. (24) yields

J
{
ηt +

1
2

[
(ηx)2 + (ηz)

2]+ z
β

,ρ
}
= 0. (25)10

Hence

ηt +
1
2

[
(ηx)2 + (ηz)

2]+ z
β
= R(ρ) (26)

where R(ρ) is a parameter function that can be determined from the asymptotic condi-
tions on the flow. To summarize: the equations of the flow in this case are

ρt +ηxρx +ηzρz = 0 (27)15

(which replaces Eq. 14), and Eq. (26).
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Other reductions of Eq. (23)

The reduction of Eq. (23) was carried out above under the assumption ∇2ψ = 0. How-
ever it can be generalized to case ∇2ψ = a where a is a constant. To this end we define

v1 = ψz, v2 = −ψx +ax.

Therefore5

(v1)z − (v2)x = 0,

which implies that there exists a function η so that

ηx = v1, ηz = v2.

Hence

ηx = ψz, ηz = −ψx +ax. (28)10

Using these relations to substitute η for ψ in Eq. (23) leads to

ρzηxt −ρx(ηz −ax)t +
[
−aρt +

1
2
J
{

(ηz −ax)2 + (ηx)2,ρ
}]

=
J{ρ,z}
β

. (29)

Therefore

J{ηt,ρ}−aρt +
1
2
J
{

(ηz −ax)2 + (ηx)2,ρ
}
=
J{ρ,z}
β

. (30)

Hence15

−aρt + J
{
ηt +

1
2

[
(ηz −ax)2 + (ηx)2]+ z

β
,ρ
}
= 0. (31)
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Using Eq. (14) we have

−aJ{ψ ,ρ}+ J
{
ηt +

1
2

[
(ηz −ax)2 + (ηx)2]+ z

β
,ρ
}
= 0. (32)

It follows then that

−aψ +ηt +
1
2

[
(ηz −ax)2 + (ηx)2]+ z

β
= R(ρ). (33)

We can eliminate ψ from this equation by differentiating with respect to z and use5

Eq. (28)

−aηx +
[
ηt +

1
2

[
(ηz −ax)2 + (ηx)2]]

z
= − 1

β
+R(ρ)z. (34)

3 Time evolution of stratified flow

In this section we shall consider the time evolution of a stratified shearless base flow
viz. a flow which satisfies as t→−∞10

lim
x→−∞

ρ0(t,x,z) =
H − z
H

, lim
x→−∞

u = 1, lim
x→−∞

v = 0 (35)

i.e. the far upstream flow is independent of time and satisfies asymptotically u = 1,
v = 0 and ρ0 is stratified with height (H is a height at which ρ0 ≈ 0). The conditions on
u,v imply that asymptotically η0 = x.

In these limits Eq. (27) is satisfied. Substituting these limiting values in Eq. (26) we15

obtain that

R(ρ) =
z
β
+

1
2
=
H(1−ρ)

β
+

1
2

. (36)
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However it is obvious that different profiles of the base flow will yield different R(ρ).
We now consider perturbations from the (shearless) base flow described by Eq. (35)

due to shape of the topography viz.

η = η0 +εφ, ρ = ρ0 +εζ (37)

From Eqs. (26) and (27) we obtain to first order in ε the following equations for φ and5

ζ

∂φ
∂t

+
∂φ
∂x

+
Hζ
β

= 0 (38)

∂ζ
∂t

+
∂ζ
∂x
− 1
H
∂φ
∂z

= 0. (39)

To find the general form of the solution of these equations we use Eq. (38) to express10

ζ in terms of φ and substitute in Eq. (39). This yields the following equation for φ

∂2φ

∂t2
+2

∂2φ
∂t∂x

+
∂2φ

∂x2
+

1
β
∂φ
∂z

= 0. (40)

It is possible to find “elementary solutions” to this equation by separation of variables if
we let

φ = p(t,x)F (z),15

where c is arbitrary positive constant so that φ to represents a perturbation moving
forward in time. This leads to

∂2p
∂t2

+2 ∂2p
∂t∂x +

∂2p
∂x2

p
= − 1

β
F (z)′

F (z)
= −ω2 (41)

where ω2 is the separation of variables constant. Primes denote differentiation with
respect to the appropriate variable.20
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Solving Eq. (41) we obtain the following elementary solution for φ

φω = Cωexp[βω2z] [G(x− t)cosωt+K (x− t)sinωt] (42)

where G(x− t), K (x− t) are arbitrary smooth functions and Cω is a constant.
The corresponding solution for ζ can be obtained by substituting this result in Eq. (38)

ζ = Cω
βω
H

exp[βω2z] [G(x− t)cosωt−K (x− t)sinωt] . (43)5

Hence the general solution for φ can be written as

φ =

∞∫
0

exp[βω2z][Gω(x− t)cosωt+Kω(x− t)sinωt]dω (44)

with similar expression for ζ .

Boundary conditions

We consider a flow in an unbounded domain over topography with shape f (x) and10

maximum height h and impose the following boundary conditions on ρ and ψ in the
limits x = −∞ and t = −∞

ψ(−∞,−∞,z) = z, ρ(−∞,−∞,z) = ρ0(z). (45)

(This implies that in this limits η = x).
At the topography we impose the following boundary condition on ρ at t = 015

ρ(0,x,εf (x)) = ρ0(εf (x)) =
H −εf (x)

H
(46)

but

ρ(0,x,εf (x)) ≈ ρ0(0,x,0)+εζ (0,x,z).
1684
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Hence at the topography

ζ (0,x,εf (x)) = −
f (x)

H
. (47)

To derive the corresponding boundary condition for η we first consider the appropri-
ate boundary condition on the stream function ψ along the topography. To this end we
assume that the topography is a line on which the stream function is constant and this5

constant can be chosen to be zero. For the base flow described in Eq. (45) ψ0 = z and
ψ = ψ0 +εψ1 where ψ1 is the perturbation due to to the topography. Hence along the
topography

0 = ψ0 +εψ1 = z+εψ1(0,x,εf (x)) = εf (x)+εψ1(0,x,εf (x)). (48)

Therefore along the topography we let ψ1(0,x,εf (x)) = −f (x). We now observe that by10

definition ψx = ηz. But ψx = εψ
1
x = −εf

′(x), (where primes denote differentiation with
respect to x) and η = −x+εφ. Therefore we infer that the boundary condition on η
along the topography is

φz(0,x,εf (x)) = −f ′(x) (49)

(which is consistent with Eq. 39).15

As to the boundary condition on η(t,∞,z) we observe that the system Eqs. (26)
and (27) contains no dissipation terms and therefore only radiation boundary condi-
tions can be imposed in this limit. (Physically this means that the horizontal group
velocity is positive and energy is radiated outward.) Similarly at z =∞ it is customary
to impose (following Durran, 1992) radiation boundary conditions. However in view of20

Eqs. (42) and (43) it is obvious that the perturbation described by these equation is
propagating forward in time and this condition is satisfied. A formal verification of this
constraint is possible by expressing F , G, K in these equations using Fourier transform
representation.
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For low lying topography (viz ε� 1) it is customary to replace the boundary condi-
tions Eqs. (46) and (47) by

ζ (0,x,0) = −
f (x)

H
, φz(0,x,0) = −f ′(x). (50)

Example If f (x) is given by a “witch of Agnesi” curve then

f (x) =
a2

(a2 +x2)
, f ′(x) = − 2a2x

(x2 +a2)2
. (51)5

Let the initial perturbation in ρ be

ζ (0,x,z) = eβλ
2z,

where λ is a constant. From Eq. (50) we infer that the general expression for ζ is given
by Eq. (43) with ω = λ. Hence at t = 0 we must have

G(x) = −
f (x)

βλ
.10

Similarly the boundary condition on φ yields

K (x) = −
f ′(x)

βλ2
.

Figures 1 and 2 exhibit cross sections of the perturbation at z = 2 and x = 20 at different
times with Cω = 0.1, a = 2, and λ = 1.
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Figure 1. A cross section of the perturbation in ρ at z = 2.

1689

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/1673/2014/npgd-1-1673-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/1673/2014/npgd-1-1673-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 1673–1690, 2014

Time dependent
Long’s equation

M. Humi

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

6 Humi: Time Dependent Long Equation

Miglietta M.M. and R. Rotunno R: Numerical Simulations of
Sheared Conditionally Unstable Flows over a Mountain Ridge,
J. Atmos. Sci., 71, 1747-1762, 2014330

Carmen J. Nappo : Atmospheric Gravity Waves, 2nd edition, Aca-
demic Press, Boston, 2012.

Peltier W.R. and Clark T.L. : Nonlinear mountain waves in two
and three spatial dimensions. Q.J.R. Meteorol. Soc 109, 527-548,
1983.335

Richter, Jadwiga H., Fabrizio Sassi, Rolando R. Garcia,: Toward a
physically based gravity wave source parameterization in agen-
eral circulation model J. Atmos.Sci. 67, 136-156, 2010.

G.J. Shutts, M.Kitchen and P.H. Hoare : A large amplitude gravity
wave in the lower stratosphere detected by radiosonde, Q.J.R.340

Meteorological Soc. 114, 579-594, 1988.
Smith R.B. : Linear theory of stratified hydrostatic flow pastan iso-

lated mountain. Tellus 32, 348-364, 1980.
Smith R.B. : Hydrostatic airflow over mountains. Advances inGeo-

physics 31, 1-41, 1989.345

Vernin, J., Trinquet, H., Jumper, G., Murphy, E., Ratkowski, A :
OHP02 gravity wave campaign in relation to optical turbulence,
Journal Environmental Fluid Mechanics, 7, 371-382, 2007.

Yih C-S : Equations governing steady two-dimensional largeam-
plitude motion of a stratified fluid. J. Fluid Mech. 29, 539-544,350

1967.
Yih C-S : Stratified flows. Academic Press, New York, NY, 1980.

−10 −5 0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

ζ

A cross section of the Perturbation in ρ at z=2

 

 
t=0
t=2*pi
t=4*pi
t=6*pi
t=8*pi

Figure 1.

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

ζ
A cross section of the Perturbation in ρ at x=20

 

 
z=0
z=1.6
z−3.2
z=4.9
z=6.5

Figure 2.Figure 2. A cross section of the perturbation in ρ at x = 20.

1690

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/1673/2014/npgd-1-1673-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/1673/2014/npgd-1-1673-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

